Greer

Point, interfacial & line defects in crystals

- Any region where order of crystal is broken
- Control structure-sensitive properties

Point defects

- Defects limited to isolated lattice sites

Vacancies: Missing atoms from crystal lattice (regions of tension)

Interstitials: Extra atoms squeezed into crystal lattice (compression)

- Lattice may locally distort around defect, resulting in a displacement of atoms from equilibrium position ⇒ local regions of stress
 - Vacancies ⇒ tensile stresses
 - Interstitials ⇒ compressive stresses

Interfacial defects

- Defects in a plane

Grain boundaries: Disordered region between grains
Twin boundaries: Portions of lattice related to each other by simple rotation

- Net result of twinning is shear deformation

- Note that plastic deformation is a permanent shear deformation

 (occurs in response to shear stresses ⇒ change of shape not volume)

 ∴ Twinning is a possible mechanism of plastic deformation

Twinning can occur in h.c.p. metals (Zn, Sn and Mg), not in f.c.c. metals

- However, a much more important mechanism of plastic deformation is **slip**

 Slip occurs by motion of dislocations

Line defects

Dislocations: Two types of dislocation: **Edge** and **Screw**

Can be visualized in terms of atoms or as a continuum model
• Motion of top portion, relative to bottom portion, corresponds to motion of dislocation through crystal.

Terminology:

Dislocation line
Line of defect

Burgers vector
Strength (and direction) of defect \(\mathbf{b} \)

Edge dislocation \(\Rightarrow \) \(\mathbf{b} \) is perpendicular to dislocation line

Screw dislocation \(\Rightarrow \) \(\mathbf{b} \) is parallel to dislocation line

Mixed dislocations \(\Rightarrow \) edge and screw components

Dislocation density:
Length of dislocation lines / unit volume of material

Glide plane:
Plane on which dislocation moves (slip plane)
Role of dislocations in plastic deformation

- Most important mechanism of plastic deformation is slip

\[U \approx -U_o \cos \left(\frac{\pi x}{r_o} \right) \]

- Shear force required to cause all atoms to slip at once is huge

\[\gamma = \frac{1}{\sqrt{3}} \frac{x}{r_o} \]

- Move top plane relative to bottom \(\Rightarrow \gamma = \frac{1}{\sqrt{3}} \frac{x}{r_o} \) across slip plane

- Can show that shear modulus is given by

\[G = \frac{\pi^2 U_o}{r_o} \left(\frac{\partial^2 U}{\partial \gamma^2} \right) \bigg|_{\gamma = 0} \]

\[\therefore \quad G \approx \frac{3\pi^2 U_o}{r_o^3} \] (1)

- Force per atom:

\[F_{atom} = \frac{\partial U}{\partial x} = \frac{\pi U_o}{r_o} \sin \left(\frac{\pi x}{r_o} \right) \]

- Number of atoms / unit area = \(\frac{1}{r_o^2} \)

\[\therefore \quad \text{Maximum shear stress to slide planes is given by} \quad \tau_{max} = \frac{F_{max}}{r_o^2} = \frac{\pi U_o}{r_o^3} \]

\[\therefore \quad \text{From Eqn. (1):} \quad \tau_{max} = \frac{G}{3\pi} \approx \frac{G}{10} \]

- \(\tau < \tau_{max} \): Atoms fall back to original position - elastic strain
• $\tau > \tau_{\text{max}}$ Slip occurs and atoms fall into new position

 (Permanent shear deformation = plasticity)

• Experimentally, shear strength of crystals orders of magnitude lower.
• Slip occurs incrementally (breaking one bond at a time) by motion of dislocations

Key points to learn about dislocations

• Plastic deformation caused by shear stresses
• Dominant mechanism is slip between atomic planes
• Slip occurs by the motion of dislocations on glide plane
• One dislocation results in slip by an amount \mathbf{b} (Burgers vector) parallel to τ
• Edge dislocation moves parallel to τ
• Screw dislocation moves perpendicular to τ

In later classes you will learn that:
(i) Motion of dislocations impeded by microstructural features
(ii) These microstructural features are controlled by processing and composition
(iii) If motion of dislocations is impeded, the yield stress increases