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Cellular Solid Mechanics 

Mechanics of Beams: 

- Euler Bernoulli Beam Theory 

o Simplified relationship relating deflection 𝑤(𝑥) to applied transverse load 𝑞(𝑥) 

o Applies well for slender beams: 
𝐸𝐼

𝜅𝐿2𝐴𝐺
≪ 1 – or –  

𝑟

𝐿
< 10, with Young’s modulus (𝐸), area 

moment of inertia (𝐼), cross sectional area (𝐴), beam length (𝐿), shear modulus (𝐺) 

 

Beam under applied load q(x) with corresponding cross section 

o Governing ODE: 

𝑑2

𝑑𝑥2
(𝐸𝐼

𝑑2𝑤

𝑑𝑥2
) = 𝑞(𝑥) 

o Shear Force: 

𝑄 = −
𝑑

𝑑𝑥
(𝐸𝐼

𝑑2𝑤

𝑑𝑥2
) 

o Bending Moment: 

𝑀 = −𝐸𝐼
𝑑2𝑤

𝑑𝑥2
 

o  Area moment of inertia:  

 𝐼 = 𝐼𝑦 = ∬ 𝑧2𝑑𝑦 𝑑𝑧 

 Circular beam with radius 𝑟: 𝐼𝑦 =
𝜋

4
𝑟4 

 Square beam with width 𝑏 and height ℎ: 𝐼𝑦 =
𝑏ℎ3

12
 

o Stress 

 Varies linearly in the cross section of the beam 

 𝜎 = 0 in the neutral axis of the beam 

𝜎 =
𝑀𝑧

𝐼
 

o Cantilever beam solution 

 BC’s:  𝑤(0) = 0, 𝑤′(0) = 0, 𝑤′′(𝐿) = 0, 𝑤′′′(𝐿) = 𝑐𝑜𝑛𝑠𝑡. 
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 𝑤𝑚𝑎𝑥 = 𝑤(𝐿) =
𝐹𝐿3

3𝐸𝐼
 

 𝜎𝑚𝑎𝑥 = 𝜎(0) =
𝐹𝐿𝑧𝑚𝑎𝑥

𝐼
 

o Solution to simply supported beam  

 BC’s:  𝑤(0) = 𝑤(𝐿) = 0, 𝑤′′(0) = 𝑤′′(𝐿) = 0 

 𝑤𝑚𝑎𝑥 = 𝑤 (
𝐿

2
) =

𝐹𝐿3

48𝐸𝐼
 

 𝜎𝑚𝑎𝑥 = 𝜎 (
𝐿

2
) =

𝐹𝐿𝑧𝑚𝑎𝑥

4𝐼
 

o General solution 

 𝑤(𝑥) =
1

𝐸𝐼
(

1

6
𝐶1𝑥3 +

1

2
𝐶2𝑥2 + 𝐶3𝑥 + 𝐶4 + ∫ ∫ ∫ ∫ 𝑞(𝑥)𝑑𝑥4) 

- Euler Buckling 

o Elastic instability causing a bifurcation to a lower energy bent state 

o Solution to the ODE: 𝐸𝐼
𝑑4𝑤

𝑑𝑥4 + 𝑃
𝑑2𝑤

𝑑𝑥2 = 0 

o General solution is: 𝑤(𝑥) = 𝐴 sin(𝑘𝑥) + 𝐵 cos(𝑘𝑥) + 𝐶𝑥 + 𝐷, where 𝑘 = √
𝑃

𝐸𝐼
 

o The boundary conditions are then used to determine the post-buckled shape. 

o The critical load at the lowest mode buckled state can be found to be: 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

(𝑘𝐿)2
 

o 𝑘 is an “effective length factor” 

 𝑘 = 1 for pinned-pinned boundary 

 𝑘 = 0.5 for fixed-fixed boundary 

 𝑘 = 0.699 for fixed-pinned boundary 

 𝑘 = 2 for fixed-free boundary 

 
Post-buckled states of different boundary condition beams 

- Yielding failure in beams  

o When the axial stress in a beam reaches the yield stress (tension, compression, or bending), it 

will begin to yield.  
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Rigidity Theory: 

- How do we determine if a pin-jointed structure is rigid? 

- “Rigid” means that any deformation of the structure requires an increase in strain energy. 

- Maxwell’s Equation 

o Consider a structure with 𝑗 joints and 𝑏 bars subject to 𝑘 kinematic constraints 

o We can say the structure can be rigid if it satisfies the equation: 

𝑑𝑗 − 𝑏 − 𝑘 ≤ 0 { 
𝑑 = 2 in 2D
𝑑 = 3 in 3D

  

o This is a necessary but not sufficient condition.  

o The equation can be generalized to: 

𝑑𝑗 − 𝑏 − 𝑘 = 𝑚 − 𝑠 

o Here, 𝑚 represents the number of mechanisms and 𝑠 represents the states of self-stress 

o A mechanism, or inextensional mechanism, means the structure can be moved without the 

application of stress in the bars. 

o A self-stress means there can be an applied stress in the bars without any corresponding motion 

of the structure. It also means the structure is ‘statically indeterminate’. 

o Examples: 

 Squares on a hinge 

 

 3-bar structure 
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- Equilibrium Matrix Method 

o “Matrix Analysis of Statically and Kinematically Indeterminate Frameworks”, S. Pellegrino & C.R. 

Calladine (1986) 

o Create a system of equations relating the force at the nodes 𝒇 to the uniaxial force in the beams 

𝒑 with an equilibrium matrix 𝑨. 

𝒇 = 𝑨𝒑 

o 𝒇 is a vector of length 3𝑗 − 𝑘 (3 for each dimension in 3D and 𝑘 kinematic constraints) 

o 𝒑  is a vector of length 𝑏 

o 𝑨 is a matrix of size 𝑏 x (3𝑗 − 𝑘) 

o The equilibrium matrix can be used to determine the number of inextensional mechanisms and 

states of self-stress.  

o 𝑚 =  𝑏 − 𝑟𝑎𝑛𝑘(𝑨) 

o 𝑠 = (3𝑗 − 𝑘) − 𝑟𝑎𝑛𝑘(𝑨𝑇) 

o A singular value decomposition (SVD) can be performed on the matrix to find the inextensional 

mechanisms of the structure. 

Mechanics of 2D Structures: 

- Square Lattice 

o Uniaxial compression of all the beams when loaded in the 𝑥1 and 𝑥2 directions. 

 
Square lattice in compression 

o The structural stiffness can be found using the rule of mixtures to be: 

𝐸1 =
𝑡

𝐿
𝐸𝑠 

o The density of a square lattice is 𝜌̅ =
2𝑏𝑡𝐿

𝑏𝐿2 =
2𝑡

𝐿
 

o Plugging this in, we get 

𝐸̅ =
𝐸1

𝐸𝑠
=

1

2
𝜌̅ 

o Linear scaling of strength and stiffness with density. 

o Highly sensitive to imperfections. 
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- Honeycomb 

o Bending dominated structure (2D lattice with depth 𝑏) 

 
Hexagonal Lattice 

o The strength and stiffness in uniaxial compression are governed by bending of the beams. 

o Analysis for uniaxial compression in x-direction: 

 
Uniaxial compression in the 𝑥1 direction 

o The load 𝑃 on the unit cell that arises from the stress is 𝑃 = 𝜎1𝐿(1 + sin(𝜃))𝑏 

o The bending moment that arises in the beam can be found to be: 

𝑀 =
𝑃𝐿 sin(𝜃)

2
 

o From beam theory, the deflection is then: 

𝛿 =
𝑃𝐿3 sin(𝜃)

12𝐸𝑠𝐼
 

o The moment of inertia of a beam is 𝐼 = 𝑏𝑡3/12 

o The deflection of the beam in the 𝑥1 direction is 𝛿 sin(𝜃) 

o From this, the strain can be found to be: 

𝜀1 =
𝛿 sin(𝜃)

𝐿 cos(𝜃)
=

𝑃𝐿2 sin2(𝜃)

12𝐸𝑠𝐼 cos(𝜃)
=

𝜎1 sin2(𝜃) (1 + sin(𝜃))

𝐸𝑠 cos(𝜃)
(

𝐿

𝑡
)

3
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o The Young’s modulus for the structure is defined as 𝐸1 = 𝜎1/𝜀1 

𝐸̅ =
𝐸1

𝐸𝑠
=

cos(𝜃)

(1 + sin(𝜃)) sin2(𝜃)
(

𝑡

𝐿
)

3

=
4√3

3
(

𝑡

𝐿
)

3

 

o The relative density of a hexagon is: 𝜌̅ =
2

√3
(

𝑡

𝐿
) 

o Plugging this in, we get: 

𝐸̅ =
3

2
𝜌̅3  

Mechanics of 3D Structures: 

- Open Cell Foam Model 

 
Open cell foam unstressed and under an applied load 

o The density of an open cell foam scales as 𝜌̅ ∝ (
𝑡

𝐿
)

2
 

o The area moment inertia of a square beam scales as 𝐼 ∝ 𝑡4 

o Because we have a beam in bending, the deflection scales as 𝛿 ∝
𝐹𝐿3

𝐸𝑠𝐼
 

o Stress scales with applied load as 𝜎 ∝
𝐹

𝐿2 

o Strain scales with deflection as 𝜀 ∝
𝛿

𝐿
 

o Plugging this in for stiffness, we get 

𝐸1 =
𝜎

𝜀
= 𝐶

𝐸𝑠𝐼

𝐿4
= 𝐶𝐸𝑠 (

𝑡

𝐿
)

4

 

o Using our constituent relationship for relative density, we can say 

𝐸̅ =
𝐸1

𝐸𝑠
= 𝐶1𝜌̅2  
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- Octet-truss (stretching-dominated solid) 

 
Octet-truss structure 

o The octet-truss is a fully stretching dominated 3D structure, meaning there are no inextensional 

mechanisms.  

o In small strain compression, it is assumed that the beams perpendicular to the applied load 

carry the stress in tension and allow for deflection of the structure.  

o Because it is a uniaxial load that causes the deflection, the stress will scale linearly with relative 

density, similar to the square lattice and triangular lattice cases.  

𝐸 = 0.3𝐸𝑠𝜌̅ 

𝜎𝑦 = 0.3𝜎𝑦𝑠𝜌̅ 

o The 0.3 arises because only ~1/3 of the structure (the beams in tension) contributes to the 

global deflection. 

o See: “Effective properties of the octet-truss lattice material”, V.S. Deshpande, N.A. Fleck, M.F. 

Ashby (2001) 
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Property Scaling with Relative Density: 

- General scaling of strength, stiffness, and fracture toughness with relative density can be defined as  

𝐸 = 𝐵𝐸𝑠𝜌̅𝑏 

𝜎𝑦 = 𝐶𝜎𝑦𝑠𝜌̅𝑐 

𝐾𝐼𝐶 = 𝐷𝜎𝑇𝑆𝜌̅𝑑√𝐿 

- In 2D, these relations can be defined for different geometries as: 

Geometry 𝑩 𝒃 𝑪 𝒄 𝑫 𝒅 

Hexagonal 3/2 3 1/3 2 0.90 2 

Triangular 1/3 1 1/3 1 0.61 1 

Kagome 1/3 1 1/2 1 0.21 1/2 

 
- In 3D, we instead define scaling as a function of topology and whether the structure is stretching 

dominated or bending dominated.  

Topology 𝑩 𝒃 𝑪 𝒄 

Bending-dominated 1 2 0.3 3/2 

Stretching-dominated 0.3 1 0.3 1 

Stochastic 1 3 1 2 

 


