Cellular Solid Mechanics

Mechanics of Beams:

- Euler Bernoulli Beam Theory

o Simplified relationship relating deflection w(x) to applied transverse load q(x)
El
KL2AG
moment of inertia (I), cross sectional area (4), beam length (L), shear modulus (G)

o Applies well for slender beams: K 1l-or-— E < 10, with Young’s modulus (E), area

| ! )IV(X)

Beam under applied load q(x) with corresponding cross section

o Governing ODE:

d? Eldzw = )
dx? dx? -

o Shear Force:

. d Eldzw
Q= dx dx?

o Bending Moment:

d*w
M=—El—
o Area moment of inertia:
» I=1,=[[z%dydz ;
= Circular beam with radius 7: I, = %r“’ I Momert ’ Force distibuion
* Square beam with width b and height h: [,, = bl—h: ’ a: =
o Stress ST~ ¥

= Varies linearly in the cross section of the beam
= ¢ = 0inthe neutral axis of the beam

_ Mz
7T
o Cantilever beam solution
= B(C’s: w(0)=0,w'(0) =0,w"(L) =0,w"' (L) = const.
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" Wnax = w(l) =—

" Omax =0(0) =

o Solution to simply supported beam

= BC's:

3EI
FLZpax

I

w(0) =w(L) =0,w"(0)=w"(L) =0

" Wnax =W(

" Omax :0(

2

o General solution

» wk) = %(%Claﬁ + %szz + C3x + Cy + ffffq(x)dx4)

Euler Buckling

o Elastic instability causing a bifurcation to a lower energy bent state

o Solution to the ODE: ET

o General solution is: w(x) = Asin(kx) + B cos(kx) + Cx + D, where k = \/g

The boundary conditions are then used to determine the post-buckled shape.
The critical load at the lowest mode buckled state can be found to be:

)

L) _ FL3
2] 7 48EI

__ FlLzyax

41

d*w
dx*

d?w
+PE—O

k is an “effective length factor”
= k =1 for pinned-pinned boundary
= k = 0.5 for fixed-fixed boundary

= k= 0.699 for fixed-pinned boundary
= k = 2 for fixed-free boundary
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Post-buckled states of different boundary condition beams

Yielding failure in beams

O

will begin to yield.
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When the axial stress in a beam reaches the yield stress (tension, compression, or bending), it
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Rigidity Theory:

- How do we determine if a pin-jointed structure is rigid?
- “Rigid” means that any deformation of the structure requires an increase in strain energy.

- Maxwell’s Equation

@)

O

o

O

o

o

Consider a structure with j joints and b bars subject to k kinematic constraints
We can say the structure can be rigid if it satisfies the equation:

d=2in2D

dj_b_kgo{d:'sinw

This is a necessary but not sufficient condition.
The equation can be generalized to:

di—-b—k=m-s

Here, m represents the number of mechanisms and s represents the states of self-stress

A mechanism, or inextensional mechanism, means the structure can be moved without the
application of stress in the bars.

A self-stress means there can be an applied stress in the bars without any corresponding motion
of the structure. It also means the structure is ‘statically indeterminate’.

Examples:

= Squares on a hinge

»r .

= 3-bar structure
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- Equilibrium Matrix Method

O

O O O O

“Matrix Analysis of Statically and Kinematically Indeterminate Frameworks”, S. Pellegrino & C.R.

Calladine (1986)

Create a system of equations relating the force at the nodes f to the uniaxial force in the beams

p with an equilibrium matrix A.

f=A4p

f is a vector of length 3j — k (3 for each dimension in 3D and k kinematic constraints)

p is a vector of length b
Ais a matrix of size bx (3j — k)

The equilibrium matrix can be used to determine the number of inextensional mechanisms and

states of self-stress.
m = b —rank(A)
s =(3j —k) —rank(A”)

A singular value decomposition (SVD) can be performed on the matrix to find the inextensional

mechanisms of the structure.

Mechanics of 2D Structures:

- Square Lattice

Lucas R. Meza

o Uniaxial compression of all the beams when loaded in the x; and x, directions.
Oy — —% T «— Oy
R — L —
Unit Cell
Square lattice in compression
o The structural stiffness can be found using the rule of mixtures to be:
t
El == ZES
o The density of a square latticeis p = zbbLtZL = %
o Plugging this in, we get
Fo Ey 1_
g 2°
Linear scaling of strength and stiffness with density.
Highly sensitive to imperfections.
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- Honeycomb
o Bending dominated structure (2D lattice with depth b)

2Lcos(e)
«—»

L(1+sin(8))

\d

Hexagonal Lattice

o The strength and stiffness in uniaxial compression are governed by bending of the beams.
o Analysis for uniaxial compression in x-direction:

Uniaxial compression in the x; direction
The load P on the unit cell that arises from the stress is P = g, L(1 + sin(6))b

The bending moment that arises in the beam can be found to be:

PL sin(6
WRLELO

o From beam theory, the deflection is then:

5= PL3 sin(6)
© 12E]

The moment of inertia of a beam is I = bt3/12
The deflection of the beam in the x, direction is & sin(@)
From this, the strain can be found to be:

_ 8sin(0) _ PLZsin?(0) oy sin?(0) (1 + sin(9)) (L?
f1= Lcos(8) 12E.l cos(6) E cos(6) (?)
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o The Young’s modulus for the structure is defined as E; = g4 /¢&;

L

3

L

P g_z B cos(6) (t)3 B @(3)3

"~ (1 4+ sin(0)) sin2(0)

. . -2t
o The relative density of a hexagon is: p = N (L)
o Plugging this in, we get:

Mechanics of 3D Structures:

- Open Cell Foam Model

LU—_EU open cell face

Open cell foam unstressed and under an applied load

2
. ~ t

o The density of an open cell foam scales as p « (Z)

o The area moment inertia of a square beam scales as [ « t*

. . . FL?
o Because we have a beam in bending, the deflection scales as § x T

S
. . F
o Stress scales with applied load as 0 « —
L
. . . 5
o Strain scales with deflection as € « n

o Plugging this in for stiffness, we get

o EI t\*

Fi=4=Cpr=CE ()

o Using our constituent relationship for relative density, we can say
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- Octet-truss (stretching-dominated solid)

Tetrahedron B Compression
Octahedron Tension

Octet-truss structure

o The octet-truss is a fully stretching dominated 3D structure, meaning there are no inextensional
mechanisms.

o Insmall strain compression, it is assumed that the beams perpendicular to the applied load
carry the stress in tension and allow for deflection of the structure.

o Because it is a uniaxial load that causes the deflection, the stress will scale linearly with relative
density, similar to the square lattice and triangular lattice cases.

E =03E,p
gy = 0.30,5p

o The 0.3 arises because only ~1/3 of the structure (the beams in tension) contributes to the
global deflection.

o See: “Effective properties of the octet-truss lattice material”, V.S. Deshpande, N.A. Fleck, M.F.
Ashby (2001)
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Property Scaling with Relative Density:

- General scaling of strength, stiffness, and fracture toughness with relative density can be defined as

- In 2D, these relations can be defined for different geometries as:

E = BE;p?

— AC
gy = Coysp

K¢ = Dopsp®VL

Geometry B b c c D d
Hexagonal | 3/2 3 1/3 2 0.90 2
Triangular 1/3 1 1/3 1 0.61 1
Kagome 1/3 1 1/2 1 0.21 1/2

- In 3D, we instead define scaling as a function of topology and whether the structure is stretching

dominated or bending dominated.

Topology B b c c
Bending-dominated 1 2 0.3 3/2
Stretching-dominated 0.3 1 0.3 1
Stochastic 1 3 1 2
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