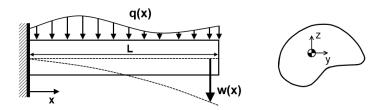
Cellular Solid Mechanics

Mechanics of Beams:

- Euler Bernoulli Beam Theory
 - O Simplified relationship relating deflection w(x) to applied transverse load q(x)
 - O Applies well for slender beams: $\frac{EI}{\kappa L^2 AG} \ll 1 \text{or} \frac{r}{L} < 10$, with Young's modulus (*E*), area moment of inertia (*I*), cross sectional area (*A*), beam length (*L*), shear modulus (*G*)



Beam under applied load q(x) with corresponding cross section

Governing ODE:

$$\frac{d^2}{dx^2} \left(EI \frac{d^2w}{dx^2} \right) = q(x)$$

o Shear Force:

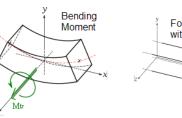
$$Q = -\frac{d}{dx} \left(EI \frac{d^2 w}{dx^2} \right)$$

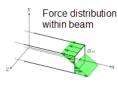
o Bending Moment:

$$M = -EI\frac{d^2w}{dx^2}$$

- Area moment of inertia:
 - $I = I_y = \iint z^2 dy \, dz$
 - Circular beam with radius $r: I_y = \frac{\pi}{4}r^4$
 - Square beam with width b and height h: $I_y = \frac{bh^3}{12}$
- Stress
 - Varies linearly in the cross section of the beam
 - $\sigma = 0$ in the neutral axis of the beam

- Cantilever beam solution
 - **BC's:** w(0) = 0, w'(0) = 0, w''(L) = 0, w'''(L) = const.

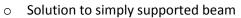




•
$$w_{max} = w(L) = \frac{FL^3}{3EI}$$

• $\sigma_{max} = \sigma(0) = \frac{FLz_{max}}{I}$

•
$$\sigma_{max} = \sigma(0) = \frac{FLz_{max}}{I}$$



BC's:
$$w(0) = w(L) = 0, w''(0) = w''(L) = 0$$

•
$$w_{max} = w\left(\frac{L}{2}\right) = \frac{FL^3}{48EI}$$

•
$$\sigma_{max} = \sigma\left(\frac{L}{2}\right) = \frac{FLz_{max}}{4I}$$

•
$$w(x) = \frac{1}{EI} \left(\frac{1}{6} C_1 x^3 + \frac{1}{2} C_2 x^2 + C_3 x + C_4 + \int \int \int \int q(x) dx^4 \right)$$

Elastic instability causing a bifurcation to a lower energy bent state

O Solution to the ODE:
$$EI\frac{d^4w}{dx^4} + P\frac{d^2w}{dx^2} = 0$$

O General solution is:
$$w(x) = A\sin(kx) + B\cos(kx) + Cx + D$$
, where $k = \sqrt{\frac{P}{EI}}$

The boundary conditions are then used to determine the post-buckled shape.

The critical load at the lowest mode buckled state can be found to be:

$$P_{cr} = \frac{\pi^2 EI}{(kL)^2}$$

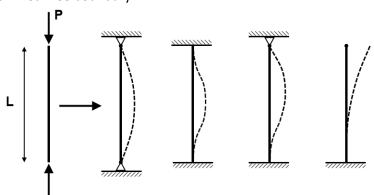
k is an "effective length factor"

• k = 1 for pinned-pinned boundary

• k = 0.5 for fixed-fixed boundary

k = 0.699 for fixed-pinned boundary

k = 2 for fixed-free boundary



Post-buckled states of different boundary condition beams

Yielding failure in beams

When the axial stress in a beam reaches the yield stress (tension, compression, or bending), it will begin to yield.

Rigidity Theory:

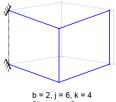
- How do we determine if a pin-jointed structure is rigid?
- "Rigid" means that any deformation of the structure requires an increase in strain energy.
- Maxwell's Equation
 - \circ Consider a structure with j joints and b bars subject to k kinematic constraints
 - We can say the structure can be rigid if it satisfies the equation:

$$dj - b - k \le 0 \begin{cases} d = 2 \text{ in 2D} \\ d = 3 \text{ in 3D} \end{cases}$$

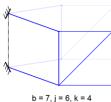
- This is a necessary but not sufficient condition.
- The equation can be generalized to:

$$dj - b - k = m - s$$

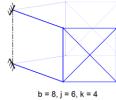
- Here, m represents the number of mechanisms and s represents the states of self-stress
- A mechanism, or inextensional mechanism, means the structure can be moved without the application of stress in the bars.
- A self-stress means there can be an applied stress in the bars without any corresponding motion of the structure. It also means the structure is 'statically indeterminate'.
- o Examples:
 - Squares on a hinge



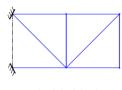
b = 2, j = 6, k = 4 2j - b - k = 2 m = 2, s = 0



b = 7, j = 6, k = 4 2j - b - k = 1 m = 1, s = 0

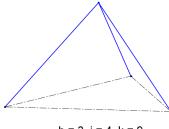


b = 8, j = 6, k = 4 2j - b - k = 0 m = 1, s = 1

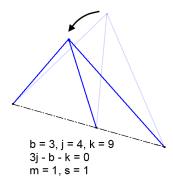


b = 8, j = 6, k = 4 2j - b - k = 0 m = 0, s = 0

3-bar structure



b = 3, j = 4, k = 9 3j - b - k = 0 m = 0, s = 0



- Equilibrium Matrix Method

- "Matrix Analysis of Statically and Kinematically Indeterminate Frameworks", S. Pellegrino & C.R.
 Calladine (1986)
- \circ Create a system of equations relating the force at the nodes f to the uniaxial force in the beams p with an equilibrium matrix A.

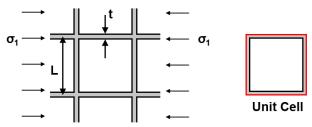
$$f = Ap$$

- o f is a vector of length 3j k (3 for each dimension in 3D and k kinematic constraints)
- o **p** is a vector of length b
- o **A** is a matrix of size $b \times (3j k)$
- The equilibrium matrix can be used to determine the number of inextensional mechanisms and states of self-stress.
- om=b-rank(A)
- $\circ \quad s = (3j k) rank(A^T)$
- A singular value decomposition (SVD) can be performed on the matrix to find the inextensional mechanisms of the structure.

Mechanics of 2D Structures:

- Square Lattice

 \circ Uniaxial compression of all the beams when loaded in the x_1 and x_2 directions.



Square lattice in compression

o The structural stiffness can be found using the rule of mixtures to be:

$$E_1 = \frac{t}{L}E_s$$

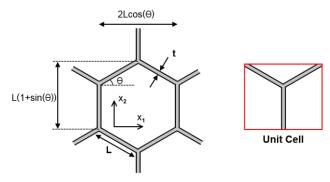
- The density of a square lattice is $\bar{\rho} = \frac{2btL}{bL^2} = \frac{2t}{L}$
- Plugging this in, we get

$$\bar{E} = \frac{E_1}{E_S} = \frac{1}{2}\bar{\rho}$$

- o Linear scaling of strength and stiffness with density.
- Highly sensitive to imperfections.

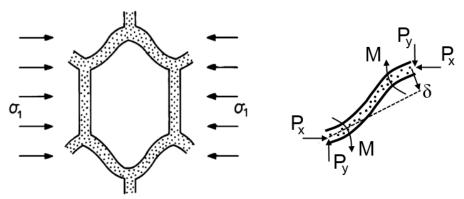
Honeycomb

• Bending dominated structure (2D lattice with depth b)



Hexagonal Lattice

- o The strength and stiffness in uniaxial compression are governed by bending of the beams.
- o Analysis for uniaxial compression in x-direction:



Uniaxial compression in the x_1 direction

- The load P on the unit cell that arises from the stress is $P = \sigma_1 L(1 + \sin(\theta))b$
- The bending moment that arises in the beam can be found to be:

$$M = \frac{PL\sin(\theta)}{2}$$

o From beam theory, the deflection is then:

$$\delta = \frac{PL^3 \sin(\theta)}{12E_s I}$$

- The moment of inertia of a beam is $I = bt^3/12$
- The deflection of the beam in the x_1 direction is $\delta \sin(\theta)$
- o From this, the strain can be found to be:

$$\varepsilon_1 = \frac{\delta \sin(\theta)}{L \cos(\theta)} = \frac{PL^2 \sin^2(\theta)}{12E_s I \cos(\theta)} = \frac{\sigma_1 \sin^2(\theta) (1 + \sin(\theta))}{E_s \cos(\theta)} \left(\frac{L}{t}\right)^3$$

 \circ The Young's modulus for the structure is defined as $E_1 = \sigma_1/arepsilon_1$

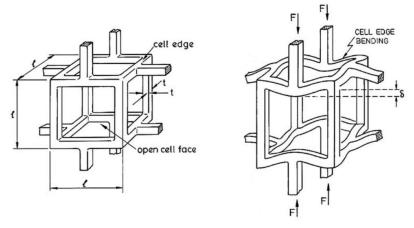
$$\bar{E} = \frac{E_1}{E_S} = \frac{\cos(\theta)}{(1+\sin(\theta))\sin^2(\theta)} \left(\frac{t}{L}\right)^3 = \frac{4\sqrt{3}}{3} \left(\frac{t}{L}\right)^3$$

- Ohe relative density of a hexagon is: $\bar{\rho} = \frac{2}{\sqrt{3}} \left(\frac{t}{L}\right)$
- O Plugging this in, we get:

$$\bar{E} = \frac{3}{2}\bar{\rho}^3$$

Mechanics of 3D Structures:

- Open Cell Foam Model



Open cell foam unstressed and under an applied load

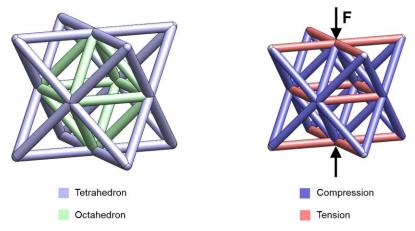
- \circ The density of an open cell foam scales as $ar{
 ho} \propto \left(rac{t}{L}
 ight)^2$
- \circ The area moment inertia of a square beam scales as $I \propto t^4$
- \circ Because we have a beam in bending, the deflection scales as $\delta \propto \frac{FL^3}{E_SI}$
- Stress scales with applied load as $\sigma \propto \frac{F}{L^2}$
- Strain scales with deflection as $\varepsilon \propto \frac{\delta}{L}$
- Plugging this in for stiffness, we get

$$E_1 = \frac{\sigma}{\varepsilon} = C \frac{E_s I}{L^4} = C E_s \left(\frac{t}{L}\right)^4$$

Using our constituent relationship for relative density, we can say

$$\boxed{\bar{E} = \frac{E_1}{E_s} = C_1 \bar{\rho}^2}$$

- Octet-truss (stretching-dominated solid)



Octet-truss structure

- The octet-truss is a fully stretching dominated 3D structure, meaning there are no inextensional mechanisms.
- o In small strain compression, it is assumed that the beams perpendicular to the applied load carry the stress in tension and allow for deflection of the structure.
- Because it is a uniaxial load that causes the deflection, the stress will scale linearly with relative density, similar to the square lattice and triangular lattice cases.

$$E=0.3E_{\rm S}\bar{\rho}$$

$$\sigma_y = 0.3 \sigma_{ys} \bar{\rho}$$

- The 0.3 arises because only $\sim 1/3$ of the structure (the beams in tension) contributes to the global deflection.
- See: "Effective properties of the octet-truss lattice material", V.S. Deshpande, N.A. Fleck, M.F. Ashby (2001)

Property Scaling with Relative Density:

- General scaling of strength, stiffness, and fracture toughness with relative density can be defined as

$$E = BE_s \bar{\rho}^b$$

$$\sigma_y = C \sigma_{ys} \bar{\rho}^c$$

$$K_{IC} = D\sigma_{TS}\bar{\rho}^d\sqrt{L}$$

- In 2D, these relations can be defined for different geometries as:

Geometry	В	b	С	С	D	d
Hexagonal	3/2	3	1/3	2	0.90	2
Triangular	1/3	1	1/3	1	0.61	1
Kagome	1/3	1	1/2	1	0.21	1/2

- In 3D, we instead define scaling as a function of topology and whether the structure is stretching dominated or bending dominated.

Topology	В	b	С	С
Bending-dominated	1	2	0.3	3/2
Stretching-dominated	0.3	1	0.3	1
Stochastic	1	3	1	2