
Chapter 3

Diffusion in Dilute Alloys

Our discussion of the atomistic mechanisms for diffusion has been confined to
the situations where the diffusing species is chemically identical to the host
atom. We now relax this assumption, and consider the effects of chemical
differences on the diffusivities of the impurity and host atom. We begin this
treatment by considering dilute alloys of impurity atoms in a host matrix, ig-
noring the effect of large chemical composition gradients on the intermixing.
We examine the diffusivity of each species by considering the effect on the
processes of the atomic jumps. In particular, we consider the vacancy mech-
anism, where the interaction between the impurity and vacancy can have a
large affect on the diffusivity of both species.

3.1 Impurity-Vacancy Interactions

An impurity is different from the host atom in either size or electronic struc-
ture or both, which can cause the impurity atom to have an interaction with
atomic vacancies. The compressive stress fields surrounding a large impu-
rity atom are relieved somewhat by the tensile stress fields surrounding a
vacancy. This stress field interaction can result in a net reduction of energy,
and hence an attraction between the vacancy and impurity. More important
is the electrostatic attraction between a charged impurity and a vacancy. To
understand the origin of this attraction, we consider the interaction between
a vacancy and a divalent impurity in a monovalent metal. An example of
this situation is Zn in Cu, where the Cu atoms each give an electron to the
electron sea, while the Zn impurity donates two electrons and resides as a
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88 CHAPTER 3. DIFFUSION IN DILUTE ALLOYS

doubly charged ion in a host of singly charged Cu ions. A vacancy is a hole
in this ion charge array, and thus has a unity negative charge. The electron
cloud will rearrange to reduce these charge asperities, but there will still be a
net electrostatic attraction between the positively charged impurity ion and
the negatively charged vacancy. This is shown schematically in Fig. 3.1.

Zn Impurity

Vacancy

Ion Core 
Charge Density

Position

Electron Charge
Density

Figure 3.1: Schematic showing the charge density in the region of a vacancy
and a doubly charged impurity in a monovalent metal. Also shown is the
electron charge density which will reduce the magnitude of the charge for
impurity and vacancy.

The magnitude of this interaction is approximated by:

∆HB = −αe2

rc

∆HB(eV) = −14.4α

rc(Å)

where e is the unit charge, α is the reduction of the charge of the impurity and
vacancy due to electron shielding, and rc is the distance of closest approach
between the impurity and vacancy.

One of the consequences of this interaction is to increase the number of
vacancies in the neighborhood of an impurity. To see this, we calculate the
number of vacancies which join with impurities to form impurity-vacancy
pairs.
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3.2 Concentration of Vacancy-Impurity Pairs

For a system with NL total lattice sites, NI free impurity atoms, NV free
vacancies, and NIV vacancy-impurity pairs, we seek to find the equilibrium
concentration of vacancy-impurity pairs. Just as in the calculation of the
equilibrium concentration of vacancies, our first task is to calculate the con-
figurational entropy of the system. We can write the number of ways to
arrange the impurities, ΩI , as:

ΩI =
NL!

(NL − NI)!NI !

Similarly for the number of ways to arrange to vacancies, ΩV :

ΩV =
NL!

(NL − NV )!NV !

For the vacancy-impurity pairs, the total number of sites to place a pair is
zNL/2, and the vacancy and impurity of each pair can be swapped, resulting
in a different configuration. Thus we have for the number of ways to arrange
the vacancy-impurity pairs, ΩIV

ΩIV =

(
z
2NL

)
!2NIV

(
z
2NL − NIV

)
!NIV !

The total number of ways to arrange the system is just the product of these
three:

Ω = ΩIΩV ΩIV

=
NL!

(NL − NI)!NI !

NL!

(NL − NV )!NV !

(
z
2NL

)
!2NIV

(
z
2NL − NIV

)
!NIV !

(3.1)

The entropy of mixing, or configuration entropy, ∆Smix can now be found
by:

∆Smix = kB ln Ω

The change in free energy of the system due to the introduction of the va-
cancies, impurities and impurity-vacancy pairs is just:

∆G = NI∆G′
I + NV ∆G′

V + NIV ∆G′
IV − T∆Smix
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where for ∆G′
V is the free energy associated with the formation of a vacancy

less the mixing entropy contribution and is given by:

∆G′
V = ∆HV − T∆Sν

where ∆Sν is the excess entropy associated with the change in lattice vibra-
tions due to the presence of the vacancy. Similar expressions can be found
for ∆G′

I and ∆G′
IV .

The partial of the system free energy, ∆G, with respect to the number of
each constituent, gives that constituent’s chemical potential, µ. For example:

∂∆G

∂NI
= µI

= ∆G′
I − T

∂∆Smix

∂NI

= ∆G′
I − kBT

∂ ln ΩI

∂NI

≈ ∆G′
I + kBT ln xI (3.2)

where xI = NI/NL. Similarly:

µV = ∆G′
V + kBT ln xV

µIV = ∆G′
IV + kBT ln

(
xIV

z

)
(3.3)

where xV = NV /NL and xIV = NIV /NL.
At equilibrium, where xI = x◦

I , xIV = x◦
IV and xV = x◦

V , we have that:

µ◦
I + µ◦

V − µ◦
IV = 0

so that:

∆G′
IV − ∆G′

I − ∆G′
V = −kBT

[
ln

(
x◦

IV

z

)
− ln x◦

I − ln x◦
V

]

It is natural to define ∆GB as the binding energy of a vacancy-impurity pair
as:

∆GB = ∆G′
IV − ∆G′

I − ∆G′
V

so that with ∆GB < 0 the bound impurity-vacancy complex is stable relative
to the free species. We then have:

x◦
IV

zx◦
Ix

◦
V

= e−∆GB/kBT
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If the system is free to arrange itself so as to have the equilibrium concen-
tration of free vacancies, we have:

x◦
V = e−∆G′

V /kBT

Also, since the total number of impurity atoms must be conserved, the con-
centration of free impurity atoms is just:

x◦
I = xIt − x◦

IV

where xIt is the total atomic fraction of impurity atoms. Thus we can write:

x◦
IV = z (xIt − x◦

IV ) exp [− (∆GB + ∆G′
V ) /kBT ]

Solving for x◦
IV we find:

x◦
IV =

zxIt exp [− (∆GB + ∆G′
V ) /kBT ]

1 + z exp [− (∆GB + ∆G′
V ) /kBT ]

From the definition of ∆GB, we can write:

∆GB + ∆G′
V = ∆G′

IV − ∆G′
V − ∆G′

I + ∆G′
V = ∆G′

IV − ∆G′
I

If ∆G′
I > ∆G′

IV , that is, the presence of the vacancy reduces the energy of
the impurity (which can occure even if both ∆G′

IV , ∆G′
I > 0), then we can

have:
exp [− (∆G′

IV − ∆G′
I) /kBT ] ≫ 1

so that:
x◦

IV ≈ xIt

Every impurity atom will have a vacancy associated with it! So as impurities
are introduced into the system, vacancies bind to them forming vacancy-
impurity pairs. New vacancies are created to maintain the equilibrium con-
centration of free vacancies.

3.3 Jump Frequency

We have seen that a strong impurity-vacancy interaction can drastically affect
the concentration of vacancies in the neighborhood of an impurity, as each
impurity can be involved in a vacancy-impurity pair. Since one of its z
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nearest neighbors is vacant, the probability that a given nearest neighbor
site is vacant is p = 1/z.1 In considering the effect that this has on the
diffusion of the vacancy, it is helpful to look at the atomic hopping rate given
by Γ = pνz where, as in the expression for diffusivity, ν is the vacancy-
atom exchange rate. For an impurity bound to a vacancy, the hopping rate
becomes:

ΓI =
νz

z
= ν

which is much greater than that for the host atoms in a pure solid.
The diffusivity of the host atoms also can be affected by this increase

in vacancy concentration, since the host atoms in the neighborhood of the
impurity see a higher concentration of vacancies. The effect of this depends
on the structure and how many nearest neighbors are shared by a pair of
neighboring impurity-host atoms. However, it is clear that the increase in
diffusivity of the host atom should be proportional to the impurity concen-
tration for dilute alloys. The size difference between host and impurity can
also affect the diffusion rate of the host. If the impurity is larger than the
host, the presence of the impurity will cause the lattice to swell proportional
to the impurity concentration (Vegard’s Law). This larger lattice will reduce
the distortion necessary for a jump of the smaller host atoms.

3.4 Correlation Effects

Correlation effects also play an important role in the case of impurity dif-
fusion. This is especially true since the impurity-vacancy exchange rate νI

might be different from the host-vacancy exchange rate νh. This difference
can be due to impurity-vacancy attraction which can result in smaller acti-
vation energy barriers for the jump process. Another possible cause for the
difference in exchange rates is size. If, for example, the impurity is much
larger than the host, the lattice distortion associated with an impurity jump
might be greater than that for a host atom jump.

We consider the case where the impurity is bound to a vacancy and has
just exchanged with the vacancy. The next vacancy jump will be either with

1There is possible confusion with the variable p here. Without a subscript, p means the
occupational probability, which for vacancy diffusion mechanism is the probability that a
given nearest neighbor is a vacancy. With a subscript, pk means the probability that the
vacancy will jump to the diffusing atom from its kth nearest neighbor.
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the impurity or with one of the host atoms which is a nearest neighbor for
both the vacancy and impurity. These jumps occur with probability

νI

bνh + νI

and
νh

bνh + νI

respectively, where b is the number of nearest neighbors in common with
both the vacancy and impurity. We wish to examine the correlation factor
for the impurity, and if we consider only one vacancy jump, we find:

⟨cos θ⟩ =
z∑

k=1

pk cos θk = (−1)
νI

bνh + νI

We can then find the correlation coefficient f for the impurity diffusion:

f =
1 + ⟨cos θ⟩
1 − ⟨cos θ⟩ =

bνh

bνh + 2νI

We then have for diffusivity for the impurity:

DI = fa2
0νIp =

ba2
0νIνh

z(bνh + 2νI)
(3.4)

It is interesting to examine limiting cases for the impurity diffusivity pre-
dicted by Eqn. 3.4.

• νI ≫ νh (Fast impurity-vacancy exchange rate.) The correlation coef-
ficient and diffusivity become:

f ≈ bνh

2νI
and DI ≈

ba2
0νh

2z

In this case the impurity jumps are fast, and the impurity spends its
time jumping back and forth between the same two sites. These jumps
are not effective in mass transport, and the diffusivity of the impurity
is governed by the slower host-vacancy jump rate νh.
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• νI ≪ νh (Fast host-vacancy exchange rate.) The correlation coefficient
and impurity diffusivity become:

f ≈ 1 and DI =
a2

0νI

z

In this case, the vacancy zips around the impurity, exchanging rapidly
with its host nearest neighbors, until finally it exchanges with the impu-
rity from some random nearest neighbor. Thus there is no correlation
between directions of successive jumps, ⟨cos θ⟩ = 0 and f = 1. Again
the diffusivity of the impurity is governed by the slower of the two jump
frequencies.

• νI = νh (Equal host-vacancy and impurity-vacancy exchange rates.) In
this case, the correlation coefficient and diffusivity become:

f ≈ b

b + 2
and DI =

ba2
0νI

z(2 + b)

In this case, it still takes several host-vacancy jumps to move the im-
purity forward.

3.5 Closing Remarks

We have seen in the preceding sections that the presence of impurities can
give rise to an increase in vacancy concentration in the neighborhood of the
impurity, and to differences between the impurity-vacancy and host-vacancy
exchange rate. We see that in general the diffusivity of the host and impu-
rity can be quit different, and that both can be a function of composition.
We next examine the effect of a chemical concentration gradient, which can
provide a driving force for diffusion beyond just the random rearrangement
of atoms.



Chapter 4

Diffusion with a Chemical
Concentration Gradient

Up to this point, we have studied diffusion in mixtures of chemically identical
species and in dilute alloys. We have seen that impurity and host atoms can
have greatly different diffusivities which can depend on the concentration
of the impurity. We have not yet considered the effect of large chemical
concentration gradients. We now consider the general situation, allowing for
the presence of large concentration gradients of chemically dissimilar species.
We see that for ideal or dilute solutions, the diffusive flux is driven by the
entropy increase associated with mixing of the species, while for non-ideal
solutions, the diffusive flux is driven by the enthalpy of mixing as well. We
find that we are able to describe the intermixing of two species using Fick’s
laws with a single diffusion coefficient D̃, which depends on concentration
and the chemical nature of the two species. In order to do so, we examine
the intermixing in a diffusion couple formed by joining two rods of different
composition of two mutually soluble elements. There are two effects which
are important in this situation. The first, known as the Kirkendall effect, is
motion of the atomic planes due to the difference in diffusivities of the two
constituents. The second is the effect of the chemical driving force on the
diffusion.
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4.1 Kirkendall Effect

For the general case of a diffusion couple of two mutually soluble but chem-
ically different elements, the difference in diffusivities of the two species can
give rise to motion of atomic planes in the interface region where diffusion
is occurring. For example, if in a A-B diffusion couple, the diffusivity of A
is greater than that of B, the flux of A across a given lattice plane will be
greater than the flux of B in the opposite direction. Thus there will be an
accumulation of atoms on one side of the reference plane, resulting in its
motion. In order to examine this phenomena, we define a position coordi-
nate z′ which is measured from a region in the sample where no diffusion is
occurring. There will be two contributions to the atomic flux relative to this
fixed coordinate system.

• Flux due to diffusive motion of atoms relative to the moving atomic
planes.

• Flux due to the motion of the atomic planes.

The total flux of component A relative to a stationary observer is:

JA = −D̃A
∂cA

∂z′
+ vcA (4.1)

where v is the velocity of the atomic planes relative to the fixed reference
frame z′, and D̃A is the diffusivity of A in the presence of the concentration
gradient1. This situation is analogous to the flux of ink in a moving stream.
If we travel in a canoe moving with the water in the stream, then we will
observe a drop of ink spreading in response to a diffusive flux:

−D̃A
∂cA

∂z

where the coordinate z is measured relative to the boat. But since z and z′

are related by z′ = z +vt and the composition gradient is independent of the
origin of the coordinate system, the diffusive flux is also given by:

−D̃A
∂cA

∂z′

1This diffusivity is sometimes called the intrinsic or chemical diffusion coefficient. We
will see that D̃A reflects the chemical nature of the intermixing of the constituents.
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An observer sitting on the bank will see this flux as well. However, he will also
see the ink moving by with the velocity of the water. This is an additional
flux vcA due to motion of the water.2

We now wish to find the velocity and see how the diffusion equation is
affected by this extra flux in Eqn. 4.1. We assume that the molar volume is
independent of composition so that:

c = cB + cA = constant (4.2)

therefore:
∂c

∂t
=

∂cA

∂t
+

∂cB

∂t
= 0

To find how the compositions cA and cB change with time, we apply the
conservation equation to both species:

∂cB

∂t
= −∂JB

∂z′
∂cA

∂t
= −∂JA

∂z′
(4.3)

and insert the flux from Eqn. 4.1:

∂c

∂t
=

∂

∂z′

(

D̃A
∂cA

∂z′
− vcA + D̃B

∂cB

∂z′
− vcB

)

=
∂

∂z′

(

D̃A
∂cA

∂z′
+ D̃B

∂cB

∂z′
− cv

)

= 0

Therefore we have that:

D̃A
∂cA

∂z′
+ D̃B

∂cB

∂z′
− vc = constant (4.4)

To find the value of this constant, we recognize that in a region far away
from the interface, where no diffusion occurs, we know that:

∂cA

∂z′
=

∂cB

∂z′
= 0

And, since there is no diffusion in this region, v = 0 also. Therefore the
constant in Eqn. 4.4 is zero. Solving Eqn: 4.4 for v, we find:

v =
1

c

(

D̃A
∂cA

∂z′
+ D̃B

∂cB

∂z′

)

2In fact, we have already seen this type of flux in the moving interface problem.
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Furthermore, from Eqn. 4.2 cA = c − cB so that:

∂cA

∂z′
= −∂cB

∂z′

and the velocity is just:

v =
(
D̃A − D̃B

) 1

c

∂cA

∂z′
(4.5)

Thus we see that a difference in diffusivities of the two constituents will result
in a motion of atomic planes in the region where diffusion is occurring.

We can find the diffusion equation for this case by applying the conser-
vation equation to the flux equation, just as we did in deriving Fick’s second
law. We insert the velocity from Eqn. 4.5 into the flux equation (Eqn. 4.1)
and apply the conservation equation (Eqn. 4.3) to find:

∂cA

∂t
= − ∂

∂z′

(

−D̃A
∂cA

∂z′
+ vcA

)

= − ∂

∂z′

[

−D̃A
∂cA

∂z′
+

(
D̃A − D̃B

) cA

c

∂cA

∂z

]

= − ∂

∂z′

[(
−cAD̃A − cBD̃A + cAD̃A − cAD̃B

c

)
∂cA

∂z′

]

=
∂

∂z′

[(
cBD̃A + cAD̃B

c

)
∂cA

∂z′

]

This is just Fick’s Second Law:

∂cA

∂t
=

∂

∂z′

(

D̃
∂cA

∂z′

)

with:

D̃ =
cBD̃A + cAD̃B

c
= xAD̃B + xBD̃A

where xi = ci/c is the atomic fraction i.
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