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4.2 Chemical Driving Force

A second effect of a chemical concentration gradient on diffusion is to change
the nature of the driving force. This is because diffusion changes the bonding
in a solid. If, for example, two constituents in a diffusion couple have a
preference for bonding with unlike neighbors, that is, they have a negative
heat of mixing, then the decrease in free energy associated with diffusional
mixing will have an enthalpy contribution as well as the mixing entropy
contribution characteristic of ideal or dilute solutions. This added enthalpy
contribution will act as a driving force to increase intermixing. Conversely,
if the mixing enthalpy is positive, then the diffusional rate will be lower than
that for an ideal or dilute solution. In order to examine this effect we must
generalize Fick’s first law, the flux equation, by realizing that flux occurs as
a result of a system’s drive to approach thermodynamic equilibrium. With
this treatment, generally attributed to Darken, we can describe the mixing of
chemically dissimilar materials with a diffusion coefficient which is a function
of the chemical nature of the solution.

4.2.1 Generalized Flux Equations

Thermodynamic equilibrium is characterized by the absence of spatial or
temporal variations in temperature T , pressure P , external potentials φ, and
chemical potentials of the components µi. This condition does not always
mean the absence of concentration gradients. Hence it is more reasonable to
assert that the rate of return to equilibrium, that is, the flux of atoms, energy,
and defects, is proportional the deviation from equilibrium. Hence, to first
order, the flux will be proportional to gradients in temperature, pressure,
potential, and chemical potential, rather than just to composition gradients.
The flux of the ith component is given by:

Ji = −
∑

k

Mik∇µk − MiT∇T − MiP∇P − Miφ∇φ (4.6)

where the Mij’s are the coupling coefficients between fluxes in i and gradients
in k. These coefficients reflect the strength driving the flux and the mobility
of the species in responding with movement.

In the case of a one-dimensional, isothermal, isobaric diffusion with no
external potential gradients of an alloy of two components with a vacancy
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mechanism we can write for the flux of the components:

JA = −MAA
∂µA

∂z
− MAB

∂µB

∂z
− MAV

∂µV

∂z

JB = −MBA
∂µA

∂z
− MBB

∂µB

∂z
− MBV

∂µV

∂z

JV = −MV A
∂µA

∂z
− MV B

∂µB

∂z
− MV V

∂µV

∂z
(4.7)

Vacancies can only be created or destroyed at sources or sinks such as surfaces
or defects. Hence, throughout most of the crystal, the number of lattice sites
is conserved, so that the fluxes of the three species which can reside on a
lattice site are related by:

JA + JB + JV = 0

If this is to be true for arbitrary gradients, the sum of the coefficients must
be zero, i.e.:

MAA + MBA + MV A = 0

MAB + MBB + MV B = 0

MAV + MBV + MV V = 0

In addition there is a set of reciprocity relations, known as the Onsager
relations, which state that Mij = Mji. Combining these with Eqn. 4.7 we
find:

JA = −MAA
∂

∂z
(µA − µV ) − MAB

∂

∂z
(µB − µV )

JB = −MBA
∂

∂z
(µA − µV ) − MBB

∂

∂z
(µB − µV )

4.2.2 Darken’s Flux Equation

To arrive at Darken’s flux equation, we must make the further assumptions
that the vacancies are in thermal equilibrium everywhere, so that µV = 0,
and that the off diagonal terms are negligible. The flux for a given component
then reduces to:

Ji = −Mii
∂µi

∂z
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The chemical potential for a given component can be written:

µi = µ0(T, P ) + kBT ln ai

= µ0 + kBT (ln xi + ln γi) (4.8)

where ai is the activity of component i, and γi is the activity coefficient of i,
defined as:

γi =
ai

xi

where xi is the atomic fraction of the ith component (xi = ci/c). The term
kBT ln x1 represents the ideal mixing entropy contribution, while the term
kBT ln γi deals with the non-ideality of the solution. For example, in con-
sidering the chemical potential of a system of vacancies, impurities, and
vacancy-impurity pairs, we only considered the ideal mixing entropy term
and found:

µideal
i = µ0 + kBT ln xi

In this treatment, we are interested in deviations from ideality, and so must
use the more general expression for chemical potential Eqn. 4.8.

Our expression for the flux is then:

Ji = −Mii
∂µi

∂z

= −MiikBT

(
∂ ln xi

∂z
+

∂ ln γi

∂z

)

(4.9)

= −MiikBT

(
∂ ln xi

∂z
+

∂ ln γi

∂ ln xi

∂ ln xi

∂z

)

=
−MiikBT

ci

(

1 +
∂ ln γi

∂ ln xi

)
∂ci

∂z
(4.10)

Equation 4.10 relates the flux of a component to its concentration gradient,
and as such is a generalization of Fick’s first law. In order to examine the
relationship between Eqn. 4.10 and Fick’s first law, we consider the case of
an ideal solution where ai = xi, or the case of a dilute solution where the
activity follows Henry’s Law, that is ai = γ0

i xi where γ0
i = constant. In

either case, ∂ ln γi/∂ ln xi = 0 so that flux will be given by:

Ji = −Di
∂ci

∂z
= −MiikBT

ci

∂ci

∂z
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where Di is the tracer diffusivity of component i, and Didci/dz is just the
Fick’s Law flux. The tracer diffusivity Di is the diffusion coefficient for the
constituent i which would be measured in a homogeneous alloy where the
only concentration gradients were in the relative concentration of i and a
chemically identical but distinguishable tracer i∗. Hence, although Di is
affected by the alloying effects discussed in chapter 3, and as such can be
a function of composition, it does not reflect the presence of concentration
gradients of chemically dissimilar materials. In a pure material, the tracer
and self diffusivities are only different by the correlation factor. We see that
the tracer diffusivity is related to the mobility by:

Di =
kBTMii

ci

We also note that Fick’s first law with the tracer diffusivity results from
considering only the ideal mixing entropy term in the chemical potential.

4.2.3 Relationship Between Tracer and Intrinsic Dif-
fusivities

If we now return to the more general case of a nonideal, nondilute solution,
we can write:

Ji = −D̃i
∂ci

∂z
= −MiikBT

ci

(

1 +
∂ ln γi

∂ ln xi

)
∂ci

∂z

From this we can find that:

D̃i =
MiikBT

ci

(

1 +
∂ ln γi

∂ ln xi

)

= Di

(

1 +
∂ ln γi

∂ ln xi

)

(4.11)

This gives us a relationship between the tracer diffusivity, Di which is mea-
sured in dilute solution or by tracer diffusion in a otherwise homogeneous
alloy, and the intrinsic diffusivity, D̃i, which takes into account the effects of
a concentration gradient and nonideality of the solution.

If we write our expression for the flux in terms of the tracer diffusivities:

Ji = −Di
∂ci

∂z
− Di

∂ ln γi

∂ ln xi

∂ci

∂z
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we see that the first term in this expression comes from the concentration
driving force arising from the ideal entropy of mixing, and the second term
arises from the non-ideality of the solution.

4.2.4 Chemical Diffusion Coefficient

By combining the effect of the thermodynamic biasing with the results we
found by examining the Kirkendall effect of the moving atomic planes we can
find the chemical interdiffusion coefficient D̃ with which we can describe the
intermixing of two constituents which form a nonideal solution. Recall our
expression for D̃:

D̃ = xAD̃B + xBD̃A

where D̃A and D̃B are the intrinsic diffusivites of the two components. We can
find a relationship between the thermodynamic biasing of these diffusivities
by using the Gibbs-Duhem relation:

xAdµA + xBdµB = 0 (4.12)

Looking at our expression for µ:

µA = µ0 + kBT ln aA = µ0 + kBT (ln xA + ln γA)

we find:

xAdµA = kBT (dxA + xAd ln γA)

= kBT

(

1 +
∂ ln γA

∂ ln xA

)

dxA

Plugging this into the Gibbs-Duhem relation (Eqn 4.12) we find:

kBT

(

1 +
∂ ln γA

∂ ln xA

)

dxA + kBT

(

1 +
∂ ln γB

∂ ln xB

)

dxB = 0

And since dxA = −dxB we can find that:

∂ ln γA

∂ ln xA
=

∂ ln γB

∂ ln xB
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Plugging Eqn. 4.11 into our expression for the chemical diffusivity, D̃, and
using the above relation, we find:

D̃ = D̃AxB + D̃BxA

= DAxB

(

1 +
∂ ln γA

∂ ln xA

)

+ DBxA

(

1 +
∂ ln γB

∂ ln xB

)

= (DAxB + DBxA)

(

1 +
∂ ln γA

∂ ln xA

)

This is our final expression relating the chemical diffusivity, D̃, which is a
measure of how a diffusion couple intermixes and is defined by Fick’s laws,
and the tracer diffusivities, Di, which measure the interdiffusion of dilute
or ideal solutions, and the non-ideality of the solution represented by the
activity coefficient, γi.

4.2.5 Regular Solution Example

As an example of the thermodynamic driving force for diffusion, we consider
a regular solution of N atoms, where the entropy of mixing is given by the
ideal solution mixing entropy:

∆Smix = −kBN (xA ln xA + xB ln xB)

and the non-ideality of the solution is represented by the enthalpy of mixing,
which in the quasichemical approximation is given by:

∆Hmix = xAxBnΩRS

where ΩRS is a measure of the strength of unlike bonds, and is given by:

ΩRS = z
[
HAB − 1

2
(HAA + HBB)

]

where z is the number of nearest neighbors, n is the total number of moles
of atoms, and Hij is the bond enthalpy per mole for i − j bonds. Here the
bonding enthalpy is negative for a stable bond, so the enthalpy of mixing
∆Hmix is negative for systems where the A-B bond is stable relative to A-A
and B-B bonds.
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